ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ГОРОДА БЕЛГОРОДА

«Белгородский инженерный юношеский лицей-интернат»

Исследовательская работа

«Количественное определение пигмента лютеина в желтках куриных яиц»

Автор проекта:

Домашева София – 10 «Г»

Научный руководитель:

Петракова Д.О. – техник-лаборант

в ИБХ РАН

Содержание

Введение	3
Литературный обзор	5
Каротиноиды: классификация, строение и свойства	5
Лютеин	8
Куриное яйцо	9
Экспериментальная часть	12
Обсуждение результатов	15
Заключение	24
Литературные источники	25
Приломение	26

Введение

В настоящее время желающих правильно питаться становится всё больше и больше, ведь здоровая пища способствует долголетию, предотвращает проблемы с сердцем, утомляемостью и ухудшением умственного и физического развития. Для этого в продуктах, которые мы употребляем, должны находиться полезные природные компоненты, например, антиоксидант – лютеин. Известно, что любые антиоксиданты способны блокировать свободные радикалы, предохраняя живые клетки от преждевременного старения. Это касается и лютеина, однако он обладает исключительной функцией: входя в состав макулярного пигмента, он защищает сетчатку от повреждающего действия синей части спектра солнечного света. Подтверждён такой лечебный эффект лютеина, как снижения риска образования глазных патологий и развития сердечнососудистых заболеваний.

Данный антиоксидант является незаменимым каротиноидом и составной частью жёлтых пигментов в листьях, цветках, плодах и почках высших растений, во многих водорослях и микроорганизмах, но в очень малых концентрациях. Самым доступным продуктом, богатым лютеином, является яичный желток. Бытует мнение, что чем ярче по окрасу желток, тем больше полезных веществ он содержит. Это действительно так, ведь куры питаются растениями, содержащие различные пигменты, в том числе и лютеин. От количества данного вещества и зависит окрас яичного желтка. Но нужно учитывать, что не во всех яйцах, которые мы покупаем, лютеина будет достаточно, поскольку не известно, каким способом выращивали кур, которые несли яйца. Также не известно чем их выкармливали, ведь спрос на ярко окрашенный желток подталкивает производителей добавлять искусственные красители в корма. Тогда можно ли говорить о пользе желтка, опираясь лишь на его цвет?

Мы выдвинули гипотезу:

- 1. Цвет желтка куриного яйца зависит от количества каротиноидов, входящих в его состав, так как они являются пигментами, но не дают точной информации об их составе.
- 2. В яйцах кур, выращенных в естественных условиях, содержится большее количество полезных каротиноидов по сравнению с покупными яйцами (яйцами кур, выращенных на искусственных кормах).

Для проверки гипотезы мы сформировали **цель**: исследование зависимости количества пигмента лютеина в куриных яйцах от типа кормления кур и цвета желтка.

Для реализации цели мы поставили следующие задачи:

- 1. Провести анализ литературы по вопросам: каротиноиды, лютеин и его воздействие на организмы и другие пигменты, содержащиеся в яичном желтке.
 - 2. Изучить работу спектрофотометра.
- 3. Поставить серию экспериментов по обнаружению лютеина в яйцах кур с разным типом кормления.
- 4. Установить корреляцию между цветом желтка и количеством лютеина, между количеством лютеина и типов кормления кур.

Объект исследования: каротиноиды, содержащиеся в яичных желтках.

Предмет исследования: зависимость количества каротиноида лютеина и цвета желтка от вида кормления кур.

При работе мы использовали следующие **методы**: анализ, наблюдение, сравнение, химический эксперимент.

Литературный обзор

Каротиноиды: классификация, строение и свойства

Каротиноиды — это природные органические пигменты, синтезируемые бактериями, грибами и высшими растениями. Они относятся к полиеновым изопреноидам терпенового ряда, построенных по единому структурному принципу из восьми изопреновых единиц, и имеющих углеродную цепь, которая состоит из 40 атомов углерода. У одних каротиноидов на конце молекулы углеродная полиизопреновая цепь образует шестичленный цикл, у других — пятичленные или алифатические углеводородные группы и прочие модификации [1].

Данные природные пигменты могут содержать в своём составе (главным образом, в циклах) гидроксильные, альдегидные, карбоксильные, эпоксидные и другие группы. Кислородные производные каротиноидов называют ксантофиллами: это лютеин, виолаксантин и неоксантин [2].

Рисунок 1. Структурные формулы некоторых каротиноидов.

Из-за множественных двойных связей, типичного циклического замыкания молекул и присутствия асимметричных атомов углерода каротиноиды имеют различные конфигурации и стереоизомеры с различными химическими и физическими свойствами. Большинство каротиноидов имеют геометрические цис- и транс-изомеры. Атом углерода с четырьмя различными заместителями обуславливает возможность образования оптических изомеров R или S. Эти различия между молекулами одной и той же формулы оказывают заметное влияние на физические свойства и эффективность каротиноидов в качестве пигментов [3, 9].

Общие свойства каротиноидов включают их нерастворимость в воде и хорошую растворимость во многих органических растворителях (хлороформ, бензол, гексан и т. д.). Каротиноиды, содержащие гидроксилы, лучше растворяются в спиртах (например, в метаноле или этаноле). Растворённые в органических растворителях каротиноиды при спектрофотометрических исследованиях дают характерные полосы поглощения преимущественно в видимой области спектра, а стереоизомеры также показывают их ультрафиолетовой области. Это один из наиболее точных показателей, используемых при идентификации этих веществ. Каротиноиды обладают уникальной способностью избирательно абсорбироваться в минеральных и органических абсорбентах, что позволяет разделять их методами хроматографии [3].

Чистые каротиноиды обладают высокой лабильностью: они очень чувствительны к солнечному свету, кислороду воздуха, нагреванию, кислотам и щелочам. Эти неблагоприятные условия приводят к их разрушению и окислительному процессу. Но, входя в состав различных комплексов (например, протеиновых), они демонстрируют намного высокую стабильность [2, 3].

Каротиноиды являются самыми эффективными веществами, для поддержания нормальной зрительной функции человека и являются основным,

безопасным и единственным источником природного витамина А, который образуется в организме человека и животных при ферментативном метаболизме каротиноидов. Также каротиноиды влияют на клеточные сигнальные пути. Они активируют экспрессию генов, кодирующих продукцию белка коннексина-43, который является интегральным компонентом межклеточного взаимодействия. Ещё данные пигменты способны регулировать многие ферментативные процессы в организме и обеспечивать важные биологические функции, касающиеся профилактики и улучшения здоровья человека [4, 11].

Роль каротиноидов многогранна не только для человека, но и для природы. Они придают ярко-жёлтую или красно-оранжевую окраску овощам и фруктам, а комплексы каротино-протеинов имеют пурпурный, голубой или зелёный цвет, и обеспечивают пигментацию наружных покровов животных (за исключением млекопитающих) [5].

Каротиноиды способны поглощать свет и улавливать свободные радикалы, выполняя защитные антиоксидантные, радио- и фотопротекторные функции, защищая организм от радиационных, УФ, свободно-радикальных повреждений. В составе природной антиоксидантной защитной системы они предохраняют мембраны клеток от оксидативного стресса, участвуют в регуляции ферментативной активности клеток и их детоксикации и активируют и регулируют экспрессию [4, 7].

И нельзя не упомянуть, что каротиноиды играют очень важную роль в процессе фотосинтеза. Они выполняют функцию фотопротекторов, защищая клетки и ткани от вредного действия видимой радиации и кислорода, поглощают свет в жёлто-зелёной части спектра и передают энергию на хлорофиллы, участвуют в поглощении и превращении квантов света в химическую энергию, а также являются компонентами биосинтеза молекулы хлорофилла, в частности её гидрофобной части — фитола. Ещё обладают структурной функцией: служат необходимыми структурными элементами, «кирпичиками» фотосистем [3, 6].

Таким образом, каротиноиды играют важную роль в жизнедеятельности человека и в природе, поскольку защищают организм от хронических и дегенеративных заболеваний, и они являются участниками неотъемлемых природных процессов и явлений.

Лютеин

Лютеин — это натуральный жёлтый пигмент, с мощными антиоксидантными свойствами, который поглощает ультрафиолетовое излучение [8].

Рисунок 2. Строение лютеина.

Лютеин выполняет ряд важнейших функций для организма человека. Он играет роль светофильтра, предотвращающего помутнение хрусталика и разрушение сетчатки и способствует уменьшению проникновения ультрафиолетовых лучей в чувствительные зрительные клетки. Нередко данный пигмент добавляют в сыворотку крови для детей с патологией всасывания и усвоения жира. Также лютеин способствует сокращению риска онкологических и сердечно-сосудистых заболеваний, полезен для нормализации сахара в крови и активизации инсулина [10, 12].

Лютеин может помочь улучшить состояние дыхательной системы, снизить риск повреждения ДНК, помочь стабилизировать структуру мозга, оптимизировать состояние костной ткани. Также данный каротиноид повышает скорость реакции у молодых людей. Здоровая диета, содержащая продукты, богатые лютеином, способствует улучшению нервных реакций, стимулирует

аутофагию (естественный механизм клетки, который разбирает бифункциональные компоненты) [8].

Лютеин в организме человека не вырабатывается, поэтому его единственным источником является пища.

Лютеин содержится в цветах бархатцев, календулы, люцерне. В высоких концентрациях он содержится в зелёных частях растений. Лютеин широко распространен в жёлто-красных овощах и фруктах, в темно-листовых овощах. Например, оранжевый перец, сладкая кукуруза, черный виноград, хурма, брокколи, шпинат, авокадо. Фрукты и овощи лучше употреблять в сыром виде, так как лютеин, как и другие каротиноиды, может разрушаться под воздействием тепла. Он содержится и в нерастительных продуктах, был обнаружен в большом количестве в желтках яиц [9].

Таким образом, лютеин является полезным пигментом для жизнедеятельности человека, который выполняет ряд важнейших функций для поддержания здорового состояния организма, и защищающий его опасных заболеваний и патологий.

Куриное яйцо

Куриное яйцо, как все знают, состоит из белка и желтка. Нас интересует желток, в которым и содержится лютеин, который и придаёт ему жёлтый цвет. Помимо лютеина, в желтке содержится каротиноид зеаксантин [9].

Зеаксантин — жёлтый пигмент из группы ксантофиллов, относится к кислородсодержащим каротиноидам, является изомером лютеина, соответственно его функции будут схожи с функциями лютеина. Зеаксантин накапливается в глазной ткани, помогает сохранить объём белого вещества мозга, а также зеаксантин вместе с витамином Е помогают улучшить состояние дыхательной системы. Данный пигмент можно найти в кукурузе, красном сладком перце, шпинате [3, 9].

Кроме лютеина и зеаксантина, яичный желток может содержать β-каротин, который придаёт желтку оранжевый цвет.

β-каротин — пигмент ярко-оранжевого цвета, важнейший представитель и основоположник всего класса каротиноидов. Молекула β-каротина лежит в основе структуры витамина А и известных ксантофиллов: астаксантина, кантаксантина, зеаксантина и др. Основным природным источником β-каротина является морковь, плоды манго, папайи, красное пальмовое масло и зелёные листья растений, овощей, где содержание его вместе с лютеином составляет более 80% от суммы всех каротиноидов. В плазме крови и тканях человека содержится 10–20% β-каротина от суммы всех каротиноидов, процентное содержание зависит от состава пищи, биодоступности, индивидуальных особенностей, патологии, вредных привычек. Основным депо β-каротина в организме являются печень и жировая ткань. Концентрация β-каротина в плазме крови — показатель состояния здоровья и образа жизни человека. При снижении уровня β-каротина в плазме нарушается антиоксидантная сбалансированность организма. Также β-каротин отвечает за здоровье глаз и кожи [2].

Домашние куриные яйца очень сильно отличаются от магазинных. Как правило, у домашних кур есть петух, и они несут оплодотворённые яйца, а это косвенно сказывается на увеличении каротинов в желтке. В домашнем яйце, в любом случае, намного больше каротинов, чем в магазинных, поэтому желток в них более насыщенного цвета [10].

Для того чтобы поддерживать качественный состав яйца, которое будет содержать все нами перечисленные выше пигменты, должно быть оказано правильное воздействие различных кормов. Если питание птицы будет правильным и сбалансированным, можно будет добиться лучших показателей. Под правильным питанием эксперты понимают наличие в ежедневном рационе следующих компонентов: злаки и зерновые смеси, овощи, зелёные корма, готовые смеси и дополнительные элементы. Последние в свою очередь являются

едва ли не самым важным пунктом, поскольку они позволяют сбалансировать витамины, минералы и микроэлементы, получаемые птицей. От этого зависит здоровье и гармоничное развитие кур, и показатели яйценоскости, а также качество яиц (размер, скорлупа, вкусовые качества [9, 13].

Таким образом, кормление кур влияет на качество яиц, и соответственно на содержание в желтке полезных для организма человека природных пигментов.

Экспериментальная часть

В работе использовалось оборудование лаборатории в ИБХ РАН: аналитические весы, спектрофотометр, термостат, лабораторное оборудование и реактивы.

Для исследования мы взяли 6 разных видов яиц (по 4-7 штук): № 1 — яйца из гипермаркета «Ашан»; № 2 — яйца из супермаркета «Пятёрочка»; № 3 — яйца деревенских кур, выращенных в клетках и питающихся комбикормом; № 4 — яйца деревенских кур, выращенных на свободном выгуле; № 5 — яйца из супермаркета «Фермер», № 6 — яйца из магазина белорусских фермерских продуктов «Дары Белоруссии».

Сначала мы фиксировали цвет скорлупы, взвешивали каждое яйцо, отделяли желток от белка и взвешивали сам желток. Все результаты приведены в таблицах 1-6.

№ 1	1	2	3	4	5	6	7
Вес яйца, г	62	59	59,6	59,5	52,5	61,2	58
Цвет яйца	Белое						
Вес желтка,	15,2	14,2	14,8	14,7	15,1	15,8	16,4
Цвет желтка	Жёлтый						

Таблица 1. Параметры исследуемых образцов № 1.

№ 2	1	2	3	4	5	6	7
Bec	50	51,3	52,7	52,1	52,5	53,5	49,5
яйца, г	50	31,3	32,1	32,1	32,3	23,3	77,5
Цвет яйца	Бежевое						
Bec	13,1	13,4	12,7	15	13,7	14,7	10,7
желтка, г	13,1	13,4	12,7	13	13,7	14,7	10,7
Цвет	Бледно-						
желтка	жёлтый						

Таблица 2. Параметры исследуемых образцов № 2.

№ 3	1	2	3	4	5	6
Вес яйца, г	65	65,9	63,2	71,5	72,8	75,9
Цвет яйца	Бежевое	Бежевое	Бежевое	Белое	Белое	Белое
Вес желтка, г	18,6	16,5	17,2	21	18,9	20,7
Цвет	Ярко-	Ярко-	Ярко-	Ярко-	Ярко-	Ярко-
желтка	жёлтый	жёлтый	жёлтый	жёлтый	жёлтый	жёлтый

Таблица 3. Параметры исследуемых образцов № 3.

№ 4	1	2	3	4	5
Вес яйца, г	48,2	43	46,2	49,8	48
Цвет яйца	Бежевое	Бежевое	Белое	Белое	Бежевое
Вес желтка, г	17	15,3	16,2	18,2	15,9
Har Marie	Ярко-	Ярко-	Ярко-	Ярко-	Ярко-
Цвет желтка	жёлтый	жёлтый	жёлтый	жёлтый	жёлтый

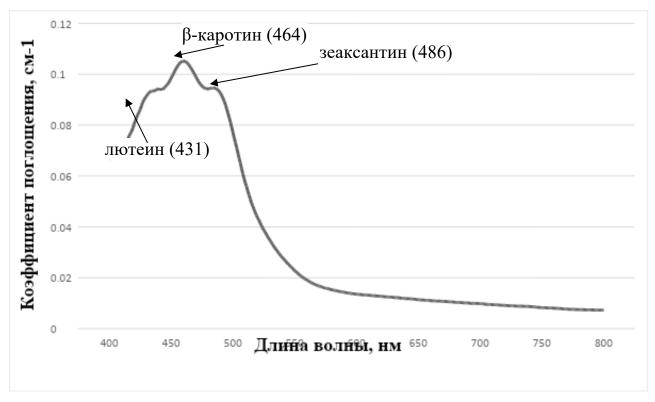
Таблица 4. Параметры исследуемых образцов № 4.

№ 5	1	2	3	4	5
Вес яйца, г	67,4	66,4	69,8	66,5	72,5
Цвет яйца	Белое	Белое	Белое	Белое	Белое
Вес желтка, г	21	21,4	16,5	19,8	18,6
Цвет желтка	Оранжевый	Оранжевый	Оранжевый	Оранжевый	Оранжевый

Таблица 5. Параметры исследуемых образцов № 5.

№ 6	1	2 3		4
Вес яйца, г	57,5	56,2	60,5	60,7
Цвет яйца	Бежевое	Бежевое	Белое	Белое
Вес желтка, г	10,7	11,8	14,3	17,4
II nom avan umvan	Бледно-	Бледно-	Бледно-	Бледно-
Цвет желтка	жёлтый	жёлтый	жёлтый	жёлтый

Таблица 6. Параметры исследуемых образцов № 6.


Мы добавляли к желтку в стаканчике соль в соотношении 1:1 по массе. Смесь переносили в ступку и пестиком перетирали до однородной массы. Затем мы ставили полученную смесь в микроволновку на 1,5 минуты, после чего

перемалывали до состояния порошка. Для приготовления пробы мы отсыпали 1 г желточно-солевого порошка и смешивали с 3 мл диметилсульфоксида (далее ДМСО). Тщательно перемешав порошок в пробирке, поставили пробу в термостат при 40°С. После этого мы использовали шприц без иглы для того, чтобы отделить экстракт от твердых остатков.

Чтобы снять спектр экстракта яичного желтка, мы наливали в специальную кювету по 2 мл ДМСО и 0,5 мл экстракта яичного желтка и проводили измерения на спектрофотометре. Экстракт разводился ДМСО до тех пор, пока показатель поглощения в максимальном значении не равнялся 0,8 или меньше.

Обсуждение результатов

Для построения графиков данные были пересчитаны из расчета 0,5 мл экстракта, доведенный ДМСО до 2,5 мл. На большинстве полученных спектров чётко выделялись три характерных пика максимумов поглощения основных каротиноидов яйца — β-каротина, лютеина и зеаксантина. На графике 1 приведен усредненный спектр всех исследованных образцов.

График 1. Усредненный спектр поглощения. Максимумы поглощения: β - каротина — 464 нм, лютеина — 431 нм, зеаксантина — 486 нм.

На основе полученных в результате исследования данных нами были построены графики 2-7 поглощения экстрактов исследованных образцов:

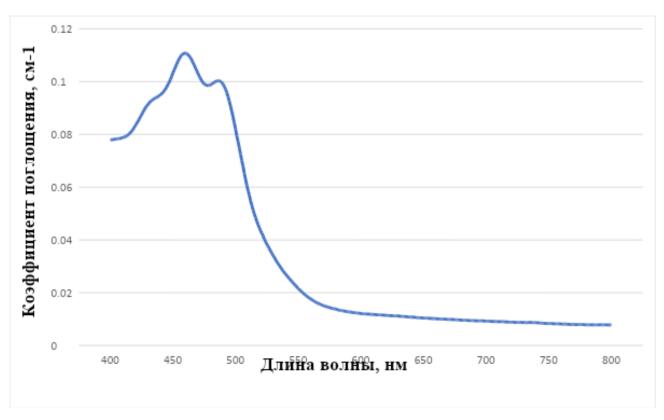
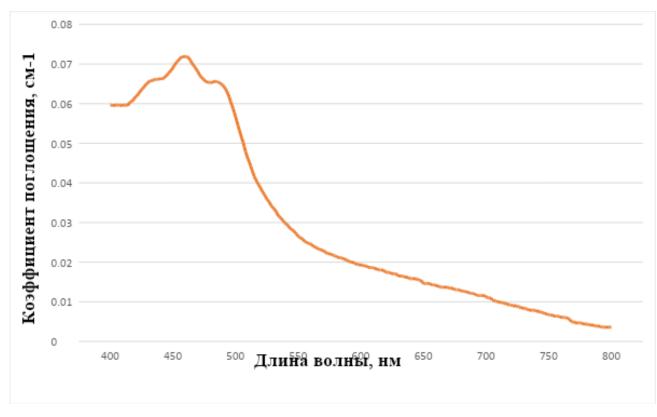



График 2. Спектр поглощения экстракта № 1.

График 3. Спектр поглощения экстракта № 2.

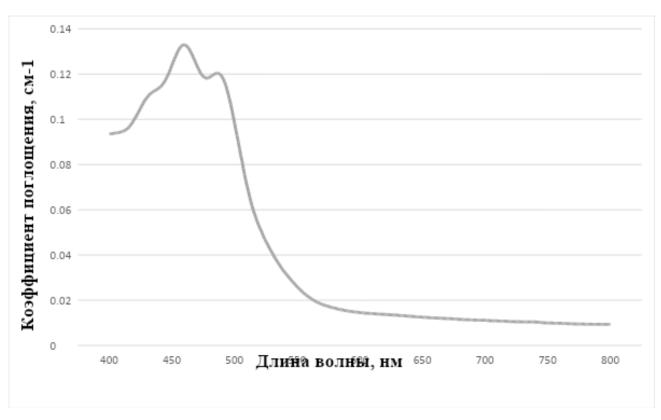
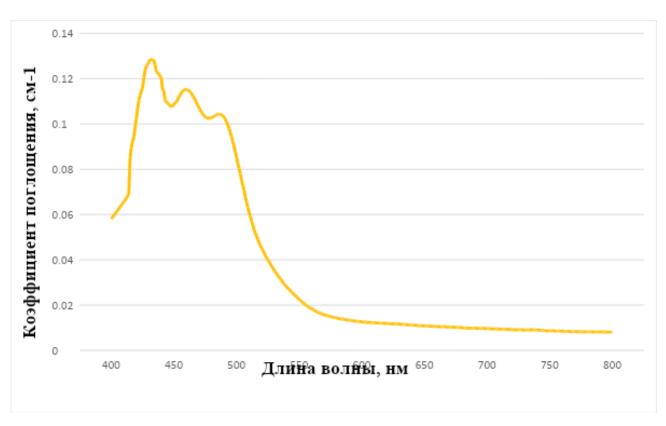



График 4. Спектр поглощения экстракта № 3.

График 5. Спектр поглощения экстракта № 4.

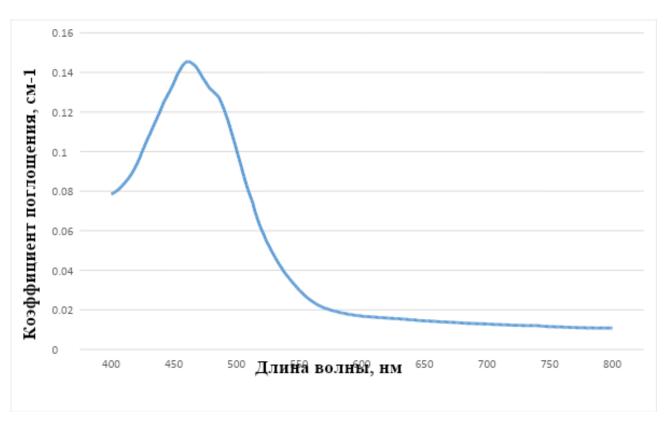
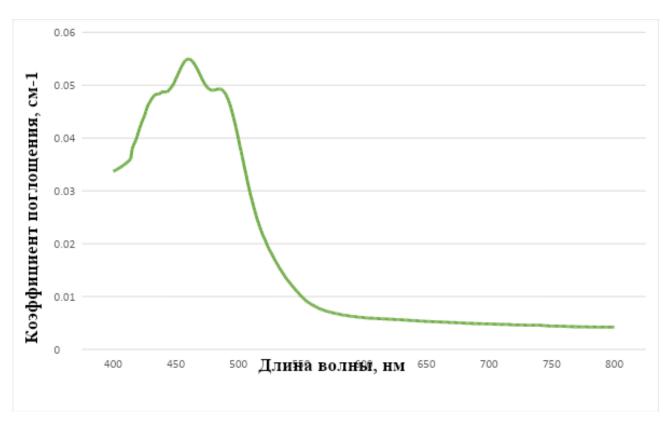



График 6. Спектр поглощения экстракта № 5.

График 7. Спектр поглощения экстракта № 6.

Для более легкого сравнения был построен график 8, который содержит спектры поглощения всех образцов:

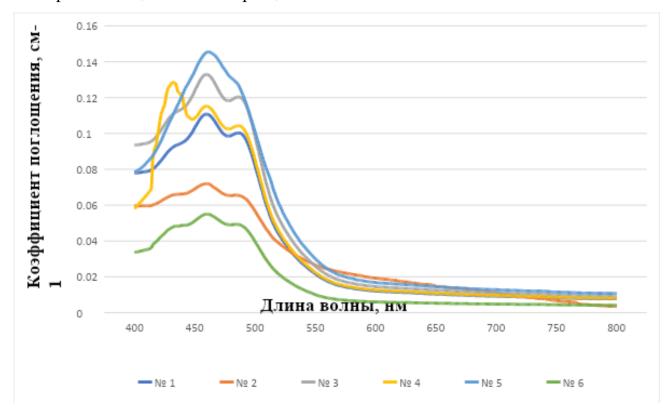


График 8. Спектр поглощения всех образцов.

По закону Бугера-Ламберта-Бера, высота пика пропорциональна концентрации вещества. По высоте пиков можно понять соотношение веществ и сравнить относительную разницу в концентрации веществ в разных пробах.

Если анализировать графики в районе пика, который соответствует поглощению лютеина, то можно заметить, что самая низкая концентрация у проб № 2 и № 6 (яйца из магазина «Пятерочка» и белорусских производителей).

Среди остальных купленных яиц высокое значение пика, а соответственно и концентрации, содержит проба № 1 (яйца из магазина «Ашан»).

Желтки яиц из магазина «Фермер» (проба № 5) имели самую яркую оранжевую окраску, однако основным пигментом является β-каротин, а про содержание лютеина сложно что-то сказать.

В пробе № 3 (яйца кур, выращенных на комбикорме) содержание каротиноидов, исходя из анализа спектра, выше, чем в любом из образцов, приобретенном в магазине.

А в пробе № 4 (яйца кур, выращенных на свободном выгуле) наибольшая концентрация пигмента лютеина, что показывает нам спектр поглощения.

Для получения количественных данных о содержании лютеина в каждой из проб необходимо:

- 1. Провести калибровку прибора с помощью растворов с известной концентрацией вещества.
- 2. Произвести перерасчёт данных о поглощении в количественные показатели.

В качестве эталона нами был взят препарат «Лютеин» фирмы РеалКапс.

Одна таблетка препарата содержит 5 мг лютеина. Растворяя содержимое капсулы в разных объёмах ДМСО мы получили растворы лютеина разных концентраций. Данные приведены в таблице 7.

Объём, мл	Концентрация, мг/мл
1	5,00
2	2,50
4	1,25
8	0,63
16	0,31
32	0,16
64	0,08
128	0,04

Таблица 7. Концентрации лютеина, использованные при построении калибровочного графика.

Для всех растворов были получены данные поглощения на длине волны 431 нм — максимуме поглощения лютеина. Зависимость поглощения от концентрации приведена на графике 9.

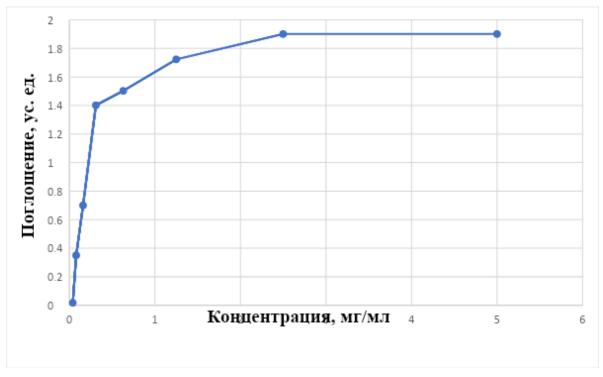


График 9. Калибровочный график.

Как видно, линейная зависимость наблюдается при низких концентрациях эталонного образца, а это согласуется с инструкцией по работе с прибором. Поэтому мы разбавляли экстракт, пока полученные значения не попадали в диапазон от 0,1 до 0,8.

Исходя из закона Бугера-Ламберта-Бера можно с высокой точность по показателю поглощения восстановить концентрацию измеряемого образца.

На основе вышеприведенных данных мы приступили к пересчету данных: коэффициент экстинкции лютеина в диметилсульфоксиде на длине волны 431 нм равняется 2550 л/моль·см.

По закону Бугера-Ламберта-Бера, поглощение (A) является произведением длины оптического пути (L) на коэффициент экстинкции (E) и концентрацию (C) вещества:

$$A = E \cdot L \cdot C$$

Отсюда можем выразить концентрацию:

$$C = \frac{A}{E \cdot L}$$

Таким образом, мы можем найти концентрацию вещества в растворе, находившемся в оптической кювете. Зная, что для измерения мы развели экстракт в 5 раз, мы рассчитали концентрацию каротиноида в экстракте $(C_{\text{экстракт}})$:

$$C_{\text{экстракт}} = 5 \cdot C$$

Экстракция производилась 3 мл ДМСО из 0,5 г желтка. Допустив, что экстракция проходила полностью, и зная молярную массу лютеина (569 г/моль), мы вычислили массу каротиноида (в мг) в 1 грамме желтка.

$$W = \frac{C_{\text{экстракт}} \cdot 0,003 (\pi) \cdot 569 (\Gamma/\text{моль}) \cdot 1000}{0,5 (\Gamma)}$$

Результаты вычислений приведены в таблице 8.

	№ 1	№ 2	№ 3	№ 4	№ 5	№ 6
Средний вес яйца, г	58,8	57,7	69,1	47	68,5	58,7
Средний вес желтка, г	15,2	13,3	18,8	16,5	19,5	13,6
Массовая доля желтка	0,26	0,26	0,27	0,35	0,24	0,23
Массовая доля лютеина в желтке, мг/г	0,62	0,44	0,74	0,86	Нет данных	0,32
Масса лютеина в яйце, мг	9,4	5,8	13,9	14,2	Нет данных	4,4

Таблица 8. Количественные показатели содержания лютеина в исследованных образцах.

Как видно из таблицы, количественные данные по массе лютеина полностью совпадают с данными, полученными на графиках. В пробе № 5 массу лютеина определить не удалось из-за большой концентрации β-каротина.

Заключение

На основании проведённых экспериментов мы сделали следующие **выводы**:

- 1. Цвет желтка куриного яйца зависит от количества каротиноидов, поскольку они являются пигментами, но не даёт представления о составе каротиноидов и их пользе для человека.
- 2. Для того, чтобы определить концентрацию конкретных каротиноидов нужно воспользоваться специализированным анализом.
- 3. Наибольшая концентрация лютеина отмечена в пробе яиц кур, содержавшихся на вольном выгуле.
- 4. Концентрация каротиноидов в желтках купленных яиц имеет существенные различия.

Данное исследование может быть продолжено: либо будем исследовать другие продукты питания, в которых может содержаться лютеин, либо попробуем использовать метод тонкослойной хроматографии для определения лютеина в пробе с большой концентрацией β-каротина.

Литературные источники

- 1. Дадали, В. А., Дадали Ю.В., Тутельян В.А., Кравченко Л.В. Каротиноиды. Биологическая активность // Вопр. питания. 2011. № 4. С. 4-18.
- 2. Dames B. H. (1976). Carotenoids. In: Chemistry and biochemistry of plant pigments, 2nd edition, vol. 2, ed. T. W. Goodwin, p. 38, London, New York and San Francisco, Academic Press.
- 3. В. Г. Никитюк. Каротиноиды и их значение в живой природе и для человека // Провизор № 6. 1999. С. 30-32.
- 4. Naguib Y.M.A. Antioxidant Activities of Astaxanthin and Related Carotenoids // J. Agric. Food Chem. 2000. Vol. 48. P. 1150-1154.
- 5. Карнаухов В.Н. Биологические функции каротиноидов. Москва. 1988; 197 стр.
- 6. Ладыгин В.Г. Пути биосинтеза, локализация, метаболизм и функции каротиноидов в хлоропластах различных видов водорослей / Вопросы современной альгологии. Пущино, 2014. 87 с
 - 7. https://studref.com/415650/meditsina/karotinoidy
 - 8. https://www.vitus.by/company/news/bolee-podrobno-o-lyuteine/
 - 9. http://properdiet.ru/
 - 10. http://dic.academic.ru/dic.nsf/ruwiki/1267807
 - 11. https://agromage.com/stat_id.php?id=1268
- 12. http://cgon.rospotrebnadzor.ru/content/ostalnoe/lyutein-pomosh-glazam-i-ne-tol-ko
 - 13. http://animalialib.ru/books/item/f00/s00/z0000046/st026.shtml

Приложение

Длина						
волны	№ 1	№2	№3	№4	№5	№6
400	0,077928	0,05963	0,093514	0,05809	0,07851	0,033701
401	0,077985	0,059679	0,093582	0,058829	0,078791	0,033818
402	0,078027	0,059461	0,093633	0,059559	0,079131	0,033936
403	0,078145	0,059537	0,093774	0,060335	0,079526	0,034085
404	0,078167	0,059575	0,0938	0,061053	0,079946	0,034205
405	0,078289	0,059657	0,093947	0,061831	0,080482	0,034369
406	0,078349	0,059714	0,094019	0,062572	0,081025	0,034514
407	0,078396	0,059503	0,094075	0,063305	0,081556	0,034653
408	0,07854	0,059597	0,094248	0,064096	0,082257	0,034841
409	0,0786	0,059657	0,09432	0,064837	0,082918	0,034998
410	0,078775	0,059503	0,09453	0,065647	0,08367	0,035201
411	0,078892	0,059587	0,09467	0,066422	0,084359	0,035379
412	0,079114	0,059713	0,094937	0,06726	0,085082	0,035595
413	0,079391	0,059601	0,095269	0,068131	0,085874	0,035836
414	0,079735	0,059517	0,095682	0,069042	0,0867	0,036103
415	0,080107	0,060103	0,096128	0,085044	0,087551	0,037888
416	0,080595	0,06043	0,096713	0,089365	0,088524	0,038549
417	0,081168	0,060497	0,097402	0,092388	0,089604	0,039115
418	0,081776	0,060804	0,098132	0,094061	0,090717	0,039557
419	0,082489	0,061219	0,098987	0,098269	0,091838	0,040283
420	0,083376	0,061703	0,100051	0,102311	0,093195	0,041062
421	0,084032	0,061846	0,100838	0,106806	0,094483	0,041818
422	0,084865	0,062299	0,101838	0,110446	0,095862	0,042544
423	0,085704	0,062717	0,102845	0,112706	0,0972	0,043131
424	0,086621	0,063161	0,103946	0,114353	0,098998	0,043723
425	0,087439	0,063556	0,104927	0,115897	0,100472	0,044245
426	0,088344	0,063798	0,106013	0,120304	0,101976	0,045081
427	0,089212	0,064258	0,107054	0,123633	0,103433	0,045794
428	0,090054	0,064673	0,108064	0,125549	0,104944	0,046364
429	0,090709	0,064982	0,108851	0,126231	0,106404	0,046755
430	0,09127	0,065257	0,109524	0,127161	0,107708	0,04713
431	0,091898	0,065571	0,110278	0,128507	0,109086	0,047572
432	0,092407	0,0658	0,110888	0,128343	0,110522	0,047836
433	0,092841	0,065747	0,111409	0,128448	0,111997	0,048111
434	0,093187	0,065909	0,111825	0,128115	0,113415	0,048314
435	0,093491	0,066006	0,11219	0,126004	0,114761	0,048319
436	0,093818	0,066087	0,112582	0,122878	0,116158	0,048234

437	0,094018	0,066196	0,112822	0,122739	0,11754	0,048413
438	0,094322	0,06607	0,113186	0,122015	0,118979	0,048566
439	0,094629	0,066197	0,113555	0,120947	0,120381	0,048683
440	0,095028	0,066376	0,114033	0,120322	0,121946	0,048884
441	0,09533	0,066124	0,114395	0,114743	0,123498	0,048563
442	0,095838	0,066359	0,115006	0,114579	0,125125	0,048847
443	0,096471	0,066521	0,115766	0,110384	0,126211	0,048707
444	0,097174	0,066805	0,116609	0,109728	0,127332	0,048943
445	0,097915	0,067106	0,117498	0,109171	0,128472	0,049201
446	0,098905	0,067506	0,118686	0,108614	0,129737	0,049539
447	0,09974	0,067845	0,119688	0,108057	0,130924	0,049828
448	0,100786	0,068268	0,120944	0,1075	0,132217	0,050184
449	0,101963	0,068502	0,122356	0,10805	0,133284	0,050663
450	0,10328	0,069065	0,123935	0,1086	0,134858	0,051231
451	0,104399	0,06955	0,125278	0,10915	0,136333	0,051736
452	0,105481	0,070021	0,126577	0,1097	0,13779	0,052229
453	0,10661	0,070526	0,127932	0,110874	0,13927	0,052799
454	0,107677	0,070731	0,129212	0,111984	0,140281	0,053299
455	0,108566	0,071127	0,13028	0,112909	0,141399	0,053744
456	0,109449	0,071521	0,131339	0,113827	0,142498	0,054184
457	0,110085	0,07181	0,132102	0,114488	0,143522	0,054524
458	0,110511	0,071744	0,132613	0,114931	0,144304	0,054762
459	0,110743	0,071856	0,132891	0,115172	0,144908	0,054909
460	0,110791	0,071887	0,132949	0,115222	0,145323	0,054968
461	0,110679	0,071847	0,132814	0,115106	0,145571	0,054951
462	0,110288	0,071682	0,132345	0,114699	0,145443	0,054792
463	0,109727	0,071444	0,131672	0,114116	0,145187	0,054556
464	0,109109	0,070916	0,13093	0,113473	0,144794	0,054286
465	0,108171	0,070256	0,129806	0,112498	0,14441	0,053897
466	0,107267	0,06987	0,128721	0,111558	0,143933	0,053511
467	0,106241	0,069431	0,127489	0,11049	0,143352	0,053069
468	0,105199	0,068978	0,126238	0,109406	0,142527	0,052597
469	0,10415	0,068521	0,124979	0,108316	0,141611	0,052113
470	0,103093	0,068058	0,123711	0,107216	0,140595	0,051616
471	0,102101	0,067358	0,122521	0,106185	0,139529	0,051139
472	0,101184	0,066948	0,121421	0,105231	0,138366	0,050679
473	0,100262	0,066538	0,120314	0,104272	0,137247	0,050223
474	0,099666	0,066267	0,119599	0,103653	0,136276	0,049903
475	0,099113	0,066018	0,118935	0,103077	0,135521	0,04962
476	0,098722	0,065565	0,118466	0,102671	0,13441	0,049363
477	0,098533	0,065461	0,118239	0,102474	0,1334	0,049191

478	0,098505	0,065425	0,118206	0,102445	0,13247	0,049088
479	0,09856	0,065424	0,118272	0,102502	0,131582	0,04902
480	0,098732	0,065222	0,118478	0,102681	0,13119	0,049045
481	0,099084	0,065352	0,1189	0,103047	0,130596	0,049117
482	0,09942	0,065475	0,119303	0,103396	0,129994	0,049182
483	0,099719	0,065582	0,119662	0,103707	0,129374	0,049232
484	0,099986	0,065676	0,119983	0,103985	0,128738	0,049268
485	0,100222	0,065494	0,120266	0,10423	0,128086	0,049291
486	0,100337	0,065523	0,120404	0,10435	0,127374	0,049263
487	0,100314	0,065214	0,120376	0,104326	0,12599	0,049116
488	0,100075	0,065076	0,120089	0,104078	0,124469	0,048875
489	0,099693	0,064877	0,119632	0,103681	0,122913	0,048577
490	0,099055	0,064572	0,118865	0,103017	0,121345	0,048181
491	0,098155	0,064155	0,117786	0,102081	0,119608	0,047671
492	0,097133	0,063686	0,116559	0,101018	0,117815	0,047109
493	0,095904	0,06313	0,115085	0,09974	0,115967	0,046465
494	0,094291	0,062411	0,113149	0,098063	0,113967	0,045662
495	0,092581	0,061649	0,111097	0,096284	0,111867	0,044812
496	0,090689	0,060548	0,108827	0,094316	0,109663	0,043884
497	0,088772	0,0597	0,106527	0,092323	0,107523	0,042953
498	0,086631	0,058759	0,103957	0,090096	0,105388	0,041939
499	0,084303	0,05774	0,101163	0,087675	0,103201	0,040849
500	0,08198	0,05672	0,098376	0,085259	0,100907	0,039751
501	0,079377	0,055583	0,095253	0,082553	0,098516	0,038539
502	0,077264	0,054392	0,092716	0,080354	0,096436	0,03754
503	0,074936	0,053373	0,089923	0,077933	0,094221	0,036448
504	0,072508	0,05231	0,08701	0,075409	0,091941	0,035312
505	0,070033	0,05122	0,084039	0,072834	0,089364	0,034129
506	0,067941	0,050304	0,081529	0,070659	0,087401	0,03315
507	0,065234	0,049125	0,078281	0,067844	0,085084	0,031906
508	0,062966	0,047871	0,075559	0,065485	0,08299	0,030848
509	0,06072	0,04689	0,072864	0,063149	0,080954	0,029805
510	0,058674	0,045998	0,070408	0,06102	0,079165	0,02886
511	0,056939	0,045237	0,068327	0,059216	0,077489	0,028044
512	0,054797	0,044303	0,065757	0,056989	0,075625	0,027057
513	0,053035	0,043271	0,063642	0,055156	0,074015	0,026236
514	0,051377	0,042518	0,061652	0,053432	0,071414	0,025356
515	0,049816	0,041554	0,05978	0,051809	0,069245	0,024556
516	0,048485	0,040955	0,058182	0,050424	0,067394	0,023873
517	0,047111	0,040337	0,056533	0,048995	0,065484	0,023168
518	0,045804	0,03975	0,054965	0,047637	0,063668	0,022498
				20		-

519	0,044608	0,039212	0,053529	0,046392	0,062005	0,021884
520	0,043461	0,038696	0,052153	0,045199	0,060411	0,021295
521	0,042543	0,038021	0,051052	0,044245	0,059135	0,020825
522	0,041489	0,037547	0,049786	0,043148	0,057669	0,020284
523	0,040292	0,037009	0,04835	0,041903	0,056006	0,01967
524	0,039297	0,036562	0,047156	0,040869	0,054623	0,019159
525	0,038367	0,035881	0,04604	0,039901	0,05333	0,018682
526	0,037634	0,035552	0,04516	0,039139	0,052311	0,018306
527	0,036713	0,035138	0,044056	0,038182	0,051031	0,017834
528	0,035743	0,03444	0,042892	0,037173	0,049683	0,017336
529	0,034951	0,034083	0,041941	0,036349	0,048581	0,01693
530	0,034132	0,033715	0,040958	0,035497	0,047443	0,01651
531	0,033356	0,033367	0,040028	0,034691	0,046365	0,016112
532	0,032464	0,032965	0,038956	0,033762	0,045124	0,015654
533	0,031728	0,032372	0,038073	0,032997	0,044102	0,015276
534	0,030977	0,031772	0,037173	0,032216	0,043058	0,014891
535	0,030324	0,031478	0,036388	0,031536	0,04215	0,014556
536	0,029658	0,031179	0,035589	0,030844	0,041224	0,014214
537	0,028864	0,030822	0,034637	0,030019	0,040121	0,013807
538	0,028173	0,030512	0,033808	0,0293	0,039161	0,013453
539	0,02759	0,029987	0,033108	0,028693	0,03835	0,013153
540	0,026996	0,02972	0,032395	0,028076	0,037525	0,012849
541	0,026464	0,029481	0,031757	0,027523	0,036785	0,012576
542	0,025906	0,02923	0,031087	0,026942	0,036009	0,01229
543	0,02529	0,02869	0,030348	0,026301	0,035153	0,011974
544	0,024783	0,028462	0,02974	0,025774	0,034448	0,011714
545	0,024217	0,028208	0,029061	0,025186	0,033662	0,011423
546	0,023628	0,027943	0,028354	0,024574	0,032844	0,011121
547	0,023202	0,027752	0,027842	0,02413	0,03225	0,010902
548	0,02266	0,027246	0,027192	0,023567	0,031498	0,010625
549	0,022149	0,027016	0,026579	0,023035	0,030787	0,010362
550	0,021588	0,026501	0,025905	0,022451	0,030007	0,010074
551	0,021159	0,026308	0,02539	0,022005	0,02941	0,009854
552	0,020745	0,026122	0,024894	0,021575	0,028835	0,009642
553	0,020288	0,025917	0,024346	0,0211	0,0282	0,009408
554	0,019799	0,025702	0,023759	0,020591	0,027521	0,009177
555	0,019392	0,025268	0,023271	0,020168	0,026955	0,009009
556	0,019036	0,025117	0,022843	0,019797	0,02646	0,008862
557	0,018629	0,024945	0,022355	0,019374	0,025894	0,008694
558	0,018295	0,024803	0,021954	0,019027	0,02543	0,008556
559	0,017938	0,024652	0,021526	0,018656	0,024934	0,008408
				20		

560	0,017622	0,024518	0,021147	0,018327	0,024495	0,008278
561	0,017354	0,024405	0,020825	0,018049	0,024123	0,008167
562	0,016995	0,023991	0,020394	0,017675	0,023624	0,008019
563	0,016714	0,023871	0,020056	0,017382	0,023232	0,007903
564	0,016459	0,023763	0,019751	0,017117	0,022878	0,007797
565	0,016175	0,023643	0,01941	0,016822	0,022483	0,00768
566	0,015913	0,02327	0,019096	0,01655	0,022119	0,007572
567	0,015743	0,023198	0,018892	0,016373	0,021883	0,007502
568	0,015538	0,023111	0,018646	0,01616	0,021598	0,007417
569	0,015279	0,023002	0,018335	0,01589	0,021238	0,00731
570	0,015106	0,022929	0,018128	0,015711	0,020998	0,007239
571	0,015024	0,022631	0,018029	0,015625	0,020884	0,007205
572	0,014822	0,022546	0,017787	0,015415	0,020603	0,007122
573	0,014586	0,022183	0,017503	0,015169	0,020274	0,007024
574	0,014536	0,022162	0,017443	0,015117	0,020205	0,007003
575	0,014331	0,022075	0,017197	0,014904	0,01992	0,006919
576	0,014279	0,022053	0,017135	0,01485	0,019848	0,006897
577	0,014104	0,021979	0,016925	0,014668	0,019604	0,006825
578	0,013977	0,021663	0,016772	0,014536	0,019428	0,006772
579	0,013849	0,021609	0,016619	0,014403	0,01925	0,00672
580	0,013797	0,021587	0,016557	0,014349	0,019178	0,006698
581	0,01364	0,021258	0,016368	0,014186	0,01896	0,006633
582	0,01352	0,021207	0,016224	0,014061	0,018793	0,006584
583	0,013395	0,021154	0,016074	0,013931	0,018619	0,006532
584	0,013258	0,021096	0,01591	0,013789	0,018429	0,006476
585	0,013209	0,021075	0,015851	0,013737	0,01836	0,006455
586	0,013111	0,020772	0,015733	0,013636	0,018224	0,006415
587	0,013011	0,020729	0,015613	0,013532	0,018085	0,006374
588	0,012964	0,020709	0,015557	0,013482	0,01802	0,006354
589	0,012861	0,020403	0,015433	0,013376	0,017877	0,006312
590	0,012759	0,02036	0,015311	0,013269	0,017735	0,00627
591	0,012702	0,020074	0,015243	0,01321	0,017656	0,006246
592	0,01258	0,020022	0,015096	0,013083	0,017486	0,006195
593	0,01258	0,020022	0,015096	0,013083	0,017486	0,006195
594	0,012482	0,019981	0,014979	0,012981	0,01735	0,006155
595	0,012385	0,019677	0,014862	0,01288	0,017215	0,006115
596	0,012385	0,019677	0,014862	0,01288	0,017215	0,006115
597	0,012253	0,019359	0,014703	0,012743	0,017032	0,00606
598	0,012253	0,019359	0,014703	0,012743	0,017032	0,00606
599	0,012203	0,019337	0,014643	0,012691	0,016962	0,00604
600	0,012133	0,019308	0,014559	0,012618	0,016865	0,006011
				20		

601	0,012051	0,019273	0,014461	0,012533	0,016751	0,005977
602	0,012051	0,019273	0,014461	0,012533	0,016751	0,005977
603	0,011944	0,018965	0,014333	0,012422	0,016602	0,005933
604	0,011919	0,018955	0,014303	0,012396	0,016567	0,005923
605	0,011919	0,018955	0,014303	0,012396	0,016567	0,005923
606	0,011919	0,018692	0,014303	0,012396	0,016567	0,005923
607	0,011869	0,018671	0,014243	0,012344	0,016498	0,005902
608	0,011816	0,018649	0,014179	0,012289	0,016424	0,00588
609	0,011766	0,018628	0,014119	0,012237	0,016355	0,005859
610	0,011766	0,018628	0,014119	0,012237	0,016355	0,005859
611	0,011691	0,018333	0,014029	0,012159	0,016251	0,005828
612	0,011691	0,018333	0,014029	0,012159	0,016251	0,005828
613	0,011641	0,018312	0,013969	0,012107	0,016181	0,005808
614	0,011609	0,018036	0,013931	0,012073	0,016137	0,005795
615	0,011571	0,01802	0,013885	0,012034	0,016084	0,005779
616	0,011571	0,01802	0,013885	0,012034	0,016084	0,005779
617	0,011461	0,017974	0,013754	0,01192	0,015931	0,005734
618	0,011493	0,017987	0,013792	0,011953	0,015976	0,005747
619	0,011493	0,017725	0,013792	0,011953	0,015976	0,005747
620	0,011443	0,017441	0,013732	0,011901	0,015906	0,005726
621	0,011418	0,017431	0,013702	0,011875	0,015871	0,005716
622	0,011336	0,017396	0,013604	0,01179	0,015758	0,005682
623	0,011336	0,017396	0,013604	0,01179	0,015758	0,005682
624	0,011318	0,017126	0,013582	0,011771	0,015732	0,005674
625	0,011286	0,017112	0,013544	0,011738	0,015688	0,005661
626	0,011236	0,017091	0,013484	0,011686	0,015619	0,005641
627	0,011236	0,017091	0,013484	0,011686	0,015619	0,005641
628	0,011236	0,017091	0,013484	0,011686	0,015619	0,005641
629	0,011186	0,016808	0,013424	0,011634	0,015549	0,00562
630	0,011161	0,016535	0,013394	0,011608	0,015514	0,00561
631	0,011089	0,016504	0,013307	0,011533	0,015414	0,00558
632	0,011057	0,01649	0,013269	0,011499	0,015369	0,005567
633	0,011014	0,016472	0,013217	0,011455	0,01531	0,005549
634	0,011014	0,016472	0,013217	0,011455	0,01531	0,005549
635	0,010964	0,016189	0,013157	0,011403	0,01524	0,005528
636	0,010907	0,016165	0,013089	0,011343	0,015161	0,005505
637	0,010882	0,016154	0,013059	0,011317	0,015126	0,005494
638	0,010832	0,016133	0,012999	0,011265	0,015057	0,005474
639	0,010782	0,015849	0,012939	0,011213	0,014987	0,005453
640	0,010732	0,015828	0,012879	0,011161	0,014918	0,005432
641	0,010732	0,015828	0,012879	0,011161	0,014918	0,005432
				24		

642	0,010732	0,015828	0,012879	0,011161	0,014918	0,005432
643	0,010682	0,015807	0,012819	0,011109	0,014848	0,005412
644	0,010635	0,015787	0,012762	0,01106	0,014782	0,005392
645	0,010553	0,015752	0,012663	0,010975	0,014669	0,005358
646	0,010528	0,015479	0,012633	0,010949	0,014634	0,005348
647	0,010478	0,015458	0,012573	0,010897	0,014564	0,005327
648	0,010478	0,015458	0,012573	0,010897	0,014564	0,005327
649	0,010478	0,014933	0,012573	0,010897	0,014564	0,005327
650	0,010403	0,014639	0,012483	0,010819	0,01446	0,005296
651	0,010403	0,014639	0,012483	0,010819	0,01446	0,005296
652	0,010353	0,014618	0,012423	0,010767	0,014391	0,005276
653	0,010353	0,014618	0,012423	0,010767	0,014391	0,005276
654	0,010303	0,014597	0,012363	0,010715	0,014321	0,005255
655	0,010303	0,014597	0,012363	0,010715	0,014321	0,005255
656	0,010228	0,014302	0,012273	0,010637	0,014217	0,005224
657	0,010228	0,014302	0,012273	0,010637	0,014217	0,005224
658	0,010228	0,014302	0,012273	0,010637	0,014217	0,005224
659	0,010178	0,014281	0,012213	0,010585	0,014147	0,005203
660	0,010093	0,013983	0,012112	0,010497	0,014029	0,005168
661	0,01015	0,014007	0,01218	0,010556	0,014109	0,005192
662	0,010068	0,013972	0,012082	0,010471	0,013995	0,005158
663	0,0101	0,013723	0,01212	0,010504	0,014039	0,005171
664	0,009993	0,013678	0,011992	0,010393	0,01389	0,005127
665	0,009993	0,013678	0,011992	0,010393	0,01389	0,005127
666	0,010025	0,013692	0,01203	0,010426	0,013935	0,00514
667	0,009975	0,01367	0,01197	0,010374	0,013865	0,00512
668	0,009975	0,01367	0,01197	0,010374	0,013865	0,00512
669	0,009923	0,013648	0,011908	0,01032	0,013793	0,005098
670	0,009873	0,013627	0,011848	0,010268	0,013724	0,005078
671	0,009873	0,013365	0,011848	0,010268	0,013724	0,005078
672	0,009873	0,013365	0,011848	0,010268	0,013724	0,005078
673	0,00988	0,013368	0,011856	0,010275	0,013733	0,00508
674	0,009823	0,013344	0,011788	0,010216	0,013654	0,005057
675	0,009773	0,01306	0,011728	0,010164	0,013585	0,005036
676	0,009748	0,013049	0,011698	0,010138	0,01355	0,005026
677	0,009751	0,013051	0,011701	0,010141	0,013554	0,005027
678	0,009648	0,013007	0,011578	0,010034	0,013411	0,004985
679	0,009648	0,013007	0,011578	0,010034	0,013411	0,004985
680	0,009623	0,012734	0,011548	0,010008	0,013376	0,004974
681	0,009598	0,012724	0,011518	0,009982	0,013341	0,004964
682	0,009566	0,01271	0,011479	0,009949	0,013297	0,004951
		-		22		-

683	0,009523	0,012692	0,011428	0,009904	0,013237	0,004933
684	0,009523	0,012429	0,011428	0,009904	0,013237	0,004933
685	0,009523	0,012429	0,011428	0,009904	0,013237	0,004933
686	0,009473	0,012408	0,011368	0,009852	0,013168	0,004912
687	0,009473	0,012146	0,011368	0,009852	0,013168	0,004912
688	0,009473	0,012146	0,011368	0,009852	0,013168	0,004912
689	0,009423	0,012125	0,011308	0,0098	0,013098	0,004892
690	0,009423	0,012125	0,011308	0,0098	0,013098	0,004892
691	0,009391	0,011849	0,011269	0,009767	0,013054	0,004879
692	0,009341	0,011827	0,011209	0,009715	0,012984	0,004858
693	0,009341	0,011565	0,011209	0,009715	0,012984	0,004858
694	0,009373	0,011579	0,011248	0,009748	0,013029	0,004871
695	0,009323	0,011557	0,011188	0,009696	0,012959	0,00485
696	0,009323	0,011557	0,011188	0,009696	0,012959	0,00485
697	0,009323	0,011557	0,011188	0,009696	0,012959	0,00485
698	0,009323	0,011557	0,011188	0,009696	0,012959	0,00485
699	0,009273	0,011536	0,011128	0,009644	0,01289	0,00483
700	0,009273	0,011274	0,011128	0,009644	0,01289	0,00483
701	0,009273	0,011011	0,011128	0,009644	0,01289	0,00483
702	0,009198	0,01098	0,011038	0,009566	0,012785	0,004799
703	0,009148	0,010958	0,010978	0,009514	0,012716	0,004778
704	0,009148	0,010958	0,010978	0,009514	0,012716	0,004778
705	0,009098	0,010412	0,010918	0,009462	0,012646	0,004758
706	0,009098	0,010412	0,010918	0,009462	0,012646	0,004758
707	0,009118	0,010158	0,010942	0,009483	0,012674	0,004766
708	0,009068	0,010137	0,010882	0,009431	0,012605	0,004745
709	0,009068	0,010137	0,010882	0,009431	0,012605	0,004745
710	0,009068	0,009875	0,010882	0,009431	0,012605	0,004745
711	0,009018	0,009854	0,010822	0,009379	0,012535	0,004724
712	0,009018	0,009854	0,010822	0,009379	0,012535	0,004724
713	0,009018	0,009854	0,010822	0,009379	0,012535	0,004724
714	0,009018	0,009591	0,010822	0,009379	0,012535	0,004724
715	0,00899	0,009579	0,010788	0,00935	0,012497	0,004713
716	0,00899	0,009579	0,010788	0,00935	0,012497	0,004713
717	0,008933	0,009293	0,01072	0,009291	0,012417	0,004689
718	0,008883	0,009272	0,01066	0,009239	0,012348	0,004669
719	0,008833	0,009251	0,0106	0,009187	0,012278	0,004648
720	0,008833	0,009251	0,0106	0,009187	0,012278	0,004648
721	0,008808	0,008978	0,01057	0,009161	0,012244	0,004638
722	0,008808	0,008978	0,01057	0,009161	0,012244	0,004638
723	0,008808	0,008978	0,01057	0,009161	0,012244	0,004638
				22		

724	0,008758	0,008956	0,01051	0,009109	0,012174	0,004617
725	0,008758	0,008956	0,01051	0,009109	0,012174	0,004617
726	0,008758	0,008694	0,01051	0,009109	0,012174	0,004617
727	0,008758	0,008694	0,01051	0,009109	0,012174	0,004617
728	0,008708	0,00841	0,01045	0,009057	0,012105	0,004597
729	0,008708	0,00841	0,01045	0,009057	0,012105	0,004597
730	0,008708	0,00841	0,01045	0,009057	0,012105	0,004597
731	0,008708	0,00841	0,01045	0,009057	0,012105	0,004597
732	0,008658	0,008127	0,01039	0,009005	0,012035	0,004576
733	0,00869	0,00814	0,010428	0,009038	0,01208	0,004589
734	0,008715	0,007888	0,010458	0,009064	0,012114	0,004599
735	0,008715	0,007888	0,010458	0,009064	0,012114	0,004599
736	0,008715	0,007888	0,010458	0,009064	0,012114	0,004599
737	0,008715	0,007888	0,010458	0,009064	0,012114	0,004599
738	0,008665	0,007867	0,010398	0,009012	0,012045	0,004579
739	0,008645	0,007859	0,010374	0,008991	0,012017	0,004571
740	0,008645	0,007596	0,010374	0,008991	0,012017	0,004571
741	0,008645	0,007596	0,010374	0,008991	0,012017	0,004571
742	0,008573	0,007566	0,010288	0,008916	0,011917	0,004541
743	0,008573	0,007566	0,010288	0,008916	0,011917	0,004541
744	0,008498	0,007272	0,010198	0,008838	0,011812	0,00451
745	0,008446	0,00725	0,010135	0,008784	0,01174	0,004488
746	0,008421	0,007239	0,010105	0,008758	0,011705	0,004478
747	0,008339	0,006942	0,010007	0,008673	0,011591	0,004444
748	0,008339	0,006942	0,010007	0,008673	0,011591	0,004444
749	0,008339	0,006942	0,010007	0,008673	0,011591	0,004444
750	0,008289	0,006658	0,009947	0,008621	0,011522	0,004423
751	0,008321	0,006672	0,009985	0,008654	0,011566	0,004437
752	0,008296	0,006661	0,009955	0,008628	0,011532	0,004426
753	0,008296	0,006661	0,009955	0,008628	0,011532	0,004426
754	0,008246	0,006378	0,009895	0,008576	0,011462	0,004406
755	0,008214	0,006364	0,009857	0,008543	0,011418	0,004392
756	0,008239	0,006375	0,009887	0,008569	0,011452	0,004403
757	0,008239	0,006375	0,009887	0,008569	0,011452	0,004403
758	0,008189	0,006353	0,009827	0,008517	0,011383	0,004382
759	0,008164	0,00608	0,009797	0,008491	0,011348	0,004372
760	0,008164	0,00608	0,009797	0,008491	0,011348	0,004372
761	0,008164	0,00608	0,009797	0,008491	0,011348	0,004372
762	0,008114	0,006059	0,009737	0,008439	0,011279	0,004351
763	0,008082	0,006046	0,009699	0,008405	0,011234	0,004338
764	0,008082	0,006046	0,009699	0,008405	0,011234	0,004338
				2.4		

7.65	0.00006	0.005555	0.000655	0.000205	0.011206	0.00422
765	0,008062	0,005775	0,009675	0,008385	0,011206	0,00433
766	0,007987	0,005743	0,009585	0,008307	0,011102	0,004299
767	0,007987	0,005481	0,009585	0,008307	0,011102	0,004299
768	0,007987	0,004956	0,009585	0,008307	0,011102	0,004299
769	0,007987	0,004956	0,009585	0,008307	0,011102	0,004299
770	0,007987	0,004956	0,009585	0,008307	0,011102	0,004299
771	0,007937	0,004672	0,009525	0,008255	0,011033	0,004278
772	0,007937	0,004672	0,009525	0,008255	0,011033	0,004278
773	0,007937	0,004672	0,009525	0,008255	0,011033	0,004278
774	0,007915	0,004663	0,009498	0,008231	0,011002	0,004269
775	0,00794	0,004673	0,009528	0,008257	0,011036	0,004279
776	0,00789	0,004652	0,009468	0,008205	0,010967	0,004259
777	0,00789	0,00439	0,009468	0,008205	0,010967	0,004259
778	0,00789	0,00439	0,009468	0,008205	0,010967	0,004259
779	0,00789	0,00439	0,009468	0,008205	0,010967	0,004259
780	0,00784	0,004369	0,009408	0,008153	0,010897	0,004238
781	0,00784	0,004369	0,009408	0,008153	0,010897	0,004238
782	0,00784	0,004106	0,009408	0,008153	0,010897	0,004238
783	0,007872	0,00412	0,009446	0,008187	0,010942	0,004251
784	0,007822	0,004098	0,009386	0,008135	0,010872	0,00423
785	0,007822	0,004098	0,009386	0,008135	0,010872	0,00423
786	0,007842	0,004107	0,00941	0,008156	0,0109	0,004239
787	0,007842	0,003844	0,00941	0,008156	0,0109	0,004239
788	0,007842	0,003844	0,00941	0,008156	0,0109	0,004239
789	0,007817	0,003834	0,00938	0,00813	0,010865	0,004228
790	0,007817	0,003834	0,00938	0,00813	0,010865	0,004228
791	0,007817	0,003834	0,00938	0,00813	0,010865	0,004228
792	0,007849	0,003585	0,009419	0,008163	0,01091	0,004242
793	0,007799	0,003564	0,009359	0,008111	0,01084	0,004221
794	0,007799	0,003564	0,009359	0,008111	0,01084	0,004221
795	0,007804	0,003566	0,009365	0,008116	0,010847	0,004223
796	0,007824	0,003574	0,009389	0,008137	0,010875	0,004231
797	0,007824	0,003574	0,009389	0,008137	0,010875	0,004231
798	0,007774	0,003553	0,009329	0,008085	0,010806	0,004211
799	0,007779	0,003555	0,009335	0,00809	0,010813	0,004213
800	0,007799	0,003564	0,009359	0,008111	0,01084	0,004221
<u> </u>		I.		1	i	i .